On the maximum Laplacian Estrada index of graphs
نویسندگان
چکیده
منابع مشابه
The Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملMaximum Estrada index of bicyclic graphs
Let G be a simple graph of order n, let λ1(G), λ2(G), . . . , λn(G) be the eigenvalues of the adjacency matrix of G. The Esrada index of G is defined as EE(G) = ∑n i=1 e i. In this paper we determine the unique graph with maximum Estrada index among bicyclic graphs with fixed order.
متن کاملLaplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacia...
متن کاملThe Estrada Index of Graphs
Let G be a simple n-vertex graph whose eigenvalues are λ1, . . . , λn. The Estrada index of G is defined as EE(G) = ∑n i=1 e λi . The importance of this topological index extends much further than just pure graph theory. For example, it has been used to quantify the degree of folding of proteins and to measure centrality of complex networks. The talk aims to give an introduction to the Estrada ...
متن کاملA note on the Laplacian Estrada index of trees
Abstract The Laplacian Estrada index of a graphG is defined as LEE(G) = ∑n i=1 e μi , where μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 are the eigenvalues of its Laplacian matrix. An unsolved problem in [19] is whether Sn(3, n − 3) or Cn(n − 5) has the third maximal Laplacian Estrada index among all trees on n vertices, where Sn(3, n − 3) is the double tree formed by adding an edge between the centers of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2016
ISSN: 0024-3795
DOI: 10.1016/j.laa.2015.11.005